Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607933

RESUMO

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Estudo de Associação Genômica Ampla , Doença de Huntington/genética , MicroRNAs/genética , Enzimas Multifuncionais
2.
Nat Commun ; 15(1): 3182, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609352

RESUMO

Huntington's disease (HD) is a dominant neurological disorder caused by an expanded HTT exon 1 CAG repeat that lengthens huntingtin's polyglutamine tract. Lowering mutant huntingtin has been proposed for treating HD, but genetic modifiers implicate somatic CAG repeat expansion as the driver of onset. We find that branaplam and risdiplam, small molecule splice modulators that lower huntingtin by promoting HTT pseudoexon inclusion, also decrease expansion of an unstable HTT exon 1 CAG repeat in an engineered cell model. Targeted CRISPR-Cas9 editing shows this effect is not due to huntingtin lowering, pointing instead to pseudoexon inclusion in PMS1. Homozygous but not heterozygous inactivation of PMS1 also reduces CAG repeat expansion, supporting PMS1 as a genetic modifier of HD and a potential target for therapeutic intervention. Although splice modulation provides one strategy, genome-wide transcriptomics also emphasize consideration of cell-type specific effects and polymorphic variation at both target and off-target sites.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/genética , Éxons/genética , Perfilação da Expressão Gênica , Heterozigoto , Homozigoto , Proteínas MutL , Proteínas de Neoplasias
3.
Brain Commun ; 6(2): fcae016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449714

RESUMO

Expansions of glutamine-coding CAG trinucleotide repeats cause a number of neurodegenerative diseases, including Huntington's disease and several of spinocerebellar ataxias. In general, age-at-onset of the polyglutamine diseases is inversely correlated with the size of the respective inherited expanded CAG repeat. Expanded CAG repeats are also somatically unstable in certain tissues, and age-at-onset of Huntington's disease corrected for individual HTT CAG repeat length (i.e. residual age-at-onset), is modified by repeat instability-related DNA maintenance/repair genes as demonstrated by recent genome-wide association studies. Modification of one polyglutamine disease (e.g. Huntington's disease) by the repeat length of another (e.g. ATXN3, CAG expansions in which cause spinocerebellar ataxia 3) has also been hypothesized. Consequently, we determined whether age-at-onset in Huntington's disease is modified by the CAG repeats of other polyglutamine disease genes. We found that the CAG measured repeat sizes of other polyglutamine disease genes that were polymorphic in Huntington's disease participants but did not influence Huntington's disease age-at-onset. Additional analysis focusing specifically on ATXN3 in a larger sample set (n = 1388) confirmed the lack of association between Huntington's disease residual age-at-onset and ATXN3 CAG repeat length. Additionally, neither our Huntington's disease onset modifier genome-wide association studies single nucleotide polymorphism data nor imputed short tandem repeat data supported the involvement of other polyglutamine disease genes in modifying Huntington's disease. By contrast, our genome-wide association studies based on imputed short tandem repeats revealed significant modification signals for other genomic regions. Together, our short tandem repeat genome-wide association studies show that modification of Huntington's disease is associated with short tandem repeats that do not involve other polyglutamine disease-causing genes, refining the landscape of Huntington's disease modification and highlighting the importance of rigorous data analysis, especially in genetic studies testing candidate modifiers.

4.
J Huntingtons Dis ; 13(1): 33-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393920

RESUMO

Somatic instability of the huntingtin (HTT) CAG repeat mutation modifies age-at-onset of Huntington's disease (HD). Understanding the mechanism and pathogenic consequences of instability may reveal therapeutic targets. Using small-pool PCR we analyzed CAG instability in the OVT73 sheep model which expresses a full-length human cDNA HTT transgene. Analyses of five- and ten-year old sheep revealed the transgene (CAG)69 repeat was remarkably stable in liver, striatum, and other brain tissues. As OVT73 sheep at ten years old have minimal cell death and behavioral changes, our findings support instability of the HTT expanded-CAG repeat as being required for the progression of HD.


Assuntos
Doença de Huntington , Animais , Ovinos/genética , Humanos , Criança , Pré-Escolar , Doença de Huntington/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Mutação , Idade de Início , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Modelos Animais de Doenças
5.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37547003

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder whose motor, cognitive, and behavioral manifestations are caused by an expanded, somatically unstable CAG repeat in the first exon of HTT that lengthens a polyglutamine tract in huntingtin. Genome-wide association studies (GWAS) have revealed DNA repair genes that influence the age-at-onset of HD and implicate somatic CAG repeat expansion as the primary driver of disease timing. To prevent the consequent neuronal damage, small molecule splice modulators (e.g., branaplam) that target HTT to reduce the levels of huntingtin are being investigated as potential HD therapeutics. We found that the effectiveness of the splice modulators can be influenced by genetic variants, both at HTT and other genes where they promote pseudoexon inclusion. Surprisingly, in a novel hTERT-immortalized retinal pigment epithelial cell (RPE1) model for assessing CAG repeat instability, these drugs also reduced the rate of HTT CAG expansion. We determined that the splice modulators also affect the expression of the mismatch repair gene PMS1, a known modifier of HD age-at-onset. Genome editing at specific HTT and PMS1 sequences using CRISPR-Cas9 nuclease confirmed that branaplam suppresses CAG expansion by promoting the inclusion of a pseudoexon in PMS1, making splice modulation of PMS1 a potential strategy for delaying HD onset. Comparison with another splice modulator, risdiplam, suggests that other genes affected by these splice modulators also influence CAG instability and might provide additional therapeutic targets.

6.
Hum Mol Genet ; 32(1): 30-45, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908190

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an inherited unstable HTT CAG repeat that expands further, thereby eliciting a disease process that may be initiated by polyglutamine-expanded huntingtin or a short polyglutamine-product. Phosphorylation of selected candidate residues is reported to mediate polyglutamine-fragment degradation and toxicity. Here to support the discovery of phosphosites involved in the life-cycle of (full-length) huntingtin, we employed mass spectrometry-based phosphoproteomics to systematically identify sites in purified huntingtin and in the endogenous protein by proteomic and phosphoproteomic analyses of members of an HD neuronal progenitor cell panel. Our results bring total huntingtin phosphosites to 95, with more located in the N-HEAT domain relative to numbers in the Bridge and C-HEAT domains. Moreover, phosphorylation of C-HEAT Ser2550 by cAMP-dependent protein kinase (PKA), the top hit in kinase activity screens, was found to hasten huntingtin degradation, such that levels of the catalytic subunit (PRKACA) were inversely related to huntingtin levels. Taken together, these findings highlight categories of phosphosites that merit further study and provide a phosphosite kinase pair (pSer2550-PKA) with which to investigate the biological processes that regulate huntingtin degradation and thereby influence the steady state levels of huntingtin in HD cells.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Doença de Huntington , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Temperatura Alta , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Fosforilação , Domínios Proteicos , Proteômica
7.
NPJ Genom Med ; 7(1): 53, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064847

RESUMO

Huntington's disease is caused by an expanded CAG tract in HTT. The length of the CAG tract accounts for over half the variance in age at onset of disease, and is influenced by other genetic factors, mostly implicating the DNA maintenance machinery. We examined a single nucleotide variant, rs79727797, on chromosome 5 in the TCERG1 gene, previously reported to be associated with Huntington's disease and a quasi-tandem repeat (QTR) hexamer in exon 4 of TCERG1 with a central pure repeat. We developed a method for calling perfect and imperfect repeats from exome-sequencing data, and tested association between the QTR in TCERG1 and residual age at motor onset (after correcting for the effects of CAG length in the HTT gene) in 610 individuals with Huntington's disease via regression analysis. We found a significant association between age at onset and the sum of the repeat lengths from both alleles of the QTR (p = 2.1 × 10-9), with each added repeat hexamer reducing age at onset by one year (95% confidence interval [0.7, 1.4]). This association explained that previously observed with rs79727797. The association with age at onset in the genome-wide association study is due to a QTR hexamer in TCERG1, translated to a glutamine/alanine tract in the protein. We could not distinguish whether this was due to cis-effects of the hexamer repeat on gene expression or of the encoded glutamine/alanine tract in the protein. These results motivate further study of the mechanisms by which TCERG1 modifies onset of HD.

9.
Nat Neurosci ; 25(4): 446-457, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379994

RESUMO

The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.


Assuntos
Endodesoxirribonucleases , Exodesoxirribonucleases , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Idade de Início , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Exoma/genética , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Sequenciamento do Exoma
10.
Am J Hum Genet ; 109(5): 885-899, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325614

RESUMO

Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.


Assuntos
Doença de Huntington , Cognição , DNA , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Expansão das Repetições de Trinucleotídeos
11.
J Huntingtons Dis ; 10(4): 423-434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34420978

RESUMO

BACKGROUND: The pathological mechanism of cellular dysfunction and death in Huntington's disease (HD) is not well defined. Our transgenic HD sheep model (OVT73) was generated to investigate these mechanisms and for therapeutic testing. One particular cohort of animals has undergone focused investigation resulting in a large interrelated multi-omic dataset, with statistically significant changes observed comparing OVT73 and control 'omic' profiles and reported in literature. OBJECTIVE: Here we make this dataset publicly available for the advancement of HD pathogenic mechanism discovery. METHODS: To enable investigation in a user-friendly format, we integrated seven multi-omic datasets from a cohort of 5-year-old OVT73 (n = 6) and control (n = 6) sheep into a single database utilising the programming language R. It includes high-throughput transcriptomic, metabolomic and proteomic data from blood, brain, and other tissues. RESULTS: We present the 'multi-omic' HD sheep database as a queryable web-based platform that can be used by the wider HD research community (https://hdsheep.cer.auckland.ac.nz/). The database is supported with a suite of simple automated statistical analysis functions for rapid exploratory analyses. We present examples of its use that validates the integrity relative to results previously reported. The data may also be downloaded for user determined analysis. CONCLUSION: We propose the use of this online database as a hypothesis generator and method to confirm/refute findings made from patient samples and alternate model systems, to expand our understanding of HD pathogenesis. Importantly, additional tissue samples are available for further investigation of this cohort.


Assuntos
Doença de Huntington , Animais , Encéfalo , Humanos , Doença de Huntington/genética , Proteômica , Ovinos
12.
Hum Mol Genet ; 30(R2): R254-R263, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34169318

RESUMO

Huntington's disease (HD) is a devastating neurogenetic disorder whose familial nature and progressive course were first described in the 19th century but for which no disease-modifying treatment is yet available. Through the active participation of HD families, this disorder has acted as a flagship for the application of human molecular genetic strategies to identify disease genes, understand pathogenesis and identify rational targets for development of therapies.


Assuntos
Suscetibilidade a Doenças , Doença de Huntington/etiologia , Alelos , Animais , Biomarcadores , Gerenciamento Clínico , Estudos de Associação Genética , Ligação Genética , Predisposição Genética para Doença , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/terapia , Modelos Biológicos
13.
J Huntingtons Dis ; 10(3): 367-375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34180418

RESUMO

BACKGROUND: Huntington's disease (HD) is caused by an expanded (>35) CAG trinucleotide repeat in huntingtin (HTT). Age-at-onset of motor symptoms is inversely correlated with the size of the inherited CAG repeat, which expands further in brain regions due to somatic repeat instability. Our recent genetic investigation focusing on autosomal SNPs revealed that age-at-onset is also influenced by genetic variation at many loci, the majority of which encode genes involved in DNA maintenance/repair processes and repeat instability. OBJECTIVE: We performed a complementary association analysis to determine whether variants in the X chromosome modify HD. METHODS: We imputed SNPs on chromosome X for ∼9,000 HD subjects of European ancestry and performed an X chromosome-wide association study (XWAS) to test for association with age-at-onset corrected for inherited CAG repeat length. RESULTS: In a mixed effects model XWAS analysis of all subjects (males and females), assuming random X-inactivation in females, no genome-wide significant onset modification signal was found. However, suggestive significant association signals were detected at Xq12 (top SNP, rs59098970; p-value, 1.4E-6), near moesin (MSN), in a region devoid of DNA maintenance genes. Additional suggestive signals not involving DNA repair genes were observed in male- and female-only analyses at other locations. CONCLUSION: Although not genome-wide significant, potentially due to small effect size compared to the power of the current study, our data leave open the possibility of modification of HD by a non-DNA repair process. Our XWAS results are publicly available at the updated GEM EURO 9K website hosted at https://www.hdinhd.org/ for browsing, pathway analysis, and data download.


Assuntos
Doença de Huntington , Idade de Início , Feminino , Genes Modificadores , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Cromossomo X
14.
Neurology ; 96(19): e2395-e2406, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33766994

RESUMO

OBJECTIVE: To assess the prevalence, timing, and functional impact of psychiatric, cognitive, and motor abnormalities in Huntington disease (HD) gene carriers, we analyzed retrospective clinical data from individuals with manifest HD. METHODS: Clinical features of patients with HD were analyzed for 6,316 individuals in an observational study of the European Huntington's Disease Network (REGISTRY) from 161 sites across 17 countries. Data came from clinical history and the patient-completed Clinical Characteristics Questionnaire that assessed 8 symptoms: motor, cognitive, apathy, depression, perseverative/obsessive behavior, irritability, violent/aggressive behavior, and psychosis. Multiple logistic regression was used to analyze relationships between symptoms and functional outcomes. RESULTS: The initial manifestation of HD is increasingly likely to be motor and less likely to be psychiatric as age at presentation increases and is independent of pathogenic CAG repeat length. The Clinical Characteristics Questionnaire captures data on nonmotor symptom prevalence that correlate specifically with validated clinical measures. Psychiatric and cognitive symptoms are common in HD gene carriers, with earlier onsets associated with longer CAG repeats. Of patients with HD, 42.4% reported at least 1 psychiatric or cognitive symptom before motor symptoms, with depression most common. Each nonmotor symptom was associated with significantly reduced total functional capacity scores. CONCLUSIONS: Psychiatric and cognitive symptoms are common and functionally debilitating in HD gene carriers. They require recognition and targeting with clinical outcome measures and treatments. However, because it is impossible to distinguish confidently between nonmotor symptoms arising from HD and primary psychiatric disorders, particularly in younger premanifest patients, nonmotor symptoms should not be used to make a clinical diagnosis of HD. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT01590589.


Assuntos
Transtornos Cognitivos/epidemiologia , Doença de Huntington/epidemiologia , Internacionalidade , Transtornos Mentais/epidemiologia , Transtornos das Habilidades Motoras/epidemiologia , Testes Neuropsicológicos , Adulto , Idoso , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/psicologia , Feminino , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/psicologia , Masculino , Transtornos Mentais/diagnóstico , Transtornos Mentais/psicologia , Pessoa de Meia-Idade , Transtornos das Habilidades Motoras/diagnóstico , Transtornos das Habilidades Motoras/psicologia , Estudos Retrospectivos , Fatores de Tempo
15.
J Huntingtons Dis ; 10(1): 35-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579862

RESUMO

Historically, Huntington's disease (HD; OMIM #143100) has played an important role in the enormous advances in human genetics seen over the past four decades. This familial neurodegenerative disorder involves variable onset followed by consistent worsening of characteristic abnormal movements along with cognitive decline and psychiatric disturbances. HD was the first autosomal disease for which the genetic defect was assigned to a position on the human chromosomes using only genetic linkage analysis with common DNA polymorphisms. This discovery set off a multitude of similar studies in other diseases, while the HD gene, later renamed HTT, and its vicinity in chromosome 4p16.3 then acted as a proving ground for development of technologies to clone and sequence genes based upon their genomic location, with the growing momentum of such advances fueling the Human Genome Project. The identification of the HD gene has not yet led to an effective treatment, but continued human genetic analysis of genotype-phenotype relationships in large HD subject populations, first at the HTT locus and subsequently genome-wide, has provided insights into pathogenesis that divide the course of the disease into two sequential, mechanistically distinct components.


Assuntos
Genes Modificadores/genética , Estudos de Associação Genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Expansão das Repetições de Trinucleotídeos/genética , Humanos
16.
Hum Mol Genet ; 30(3-4): 135-148, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33432339

RESUMO

Huntington's disease pathogenesis involves a genetic gain-of-function toxicity mechanism triggered by the expanded HTT CAG repeat. Current therapeutic efforts aim to suppress expression of total or mutant huntingtin, though the relationship of huntingtin's normal activities to the gain-of-function mechanism and what the effects of huntingtin-lowering might be are unclear. Here, we have re-investigated a rare family segregating two presumed HTT loss-of-function (LoF) variants associated with the developmental disorder, Lopes-Maciel-Rodan syndrome (LOMARS), using whole-genome sequencing of DNA from cell lines, in conjunction with analysis of mRNA and protein expression. Our findings correct the muddled annotation of these HTT variants, reaffirm they are the genetic cause of the LOMARS phenotype and demonstrate that each variant is a huntingtin hypomorphic mutation. The NM_002111.8: c.4469+1G>A splice donor variant results in aberrant (exon 34) splicing and severely reduced mRNA, whereas, surprisingly, the NM_002111.8: c.8157T>A NP_002102.4: Phe2719Leu missense variant results in abnormally rapid turnover of the Leu2719 huntingtin protein. Thus, although rare and subject to an as yet unknown LoF intolerance at the population level, bona fide HTT LoF variants can be transmitted by normal individuals leading to severe consequences in compound heterozygotes due to huntingtin deficiency.


Assuntos
Regulação da Expressão Gênica , Proteína Huntingtina/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Sequência de Aminoácidos , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Mutação com Perda de Função , Masculino , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/metabolismo , Linhagem , Fenótipo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
17.
Hum Mol Genet ; 29(18): 3044-3053, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32876667

RESUMO

Recent genome-wide association studies of age-at-onset in Huntington's disease (HD) point to distinct modes of potential disease modification: altering the rate of somatic expansion of the HTT CAG repeat or altering the resulting CAG threshold length-triggered toxicity process. Here, we evaluated the mouse orthologs of two HD age-at-onset modifier genes, FAN1 and RRM2B, for an influence on somatic instability of the expanded CAG repeat in Htt CAG knock-in mice. Fan1 knock-out increased somatic expansion of Htt CAG repeats, in the juvenile- and the adult-onset HD ranges, whereas knock-out of Rrm2b did not greatly alter somatic Htt CAG repeat instability. Simultaneous knock-out of Mlh1, the ortholog of a third HD age-at-onset modifier gene (MLH1), which suppresses somatic expansion of the Htt knock-in CAG repeat, blocked the Fan1 knock-out-induced acceleration of somatic CAG expansion. This genetic interaction indicates that functional MLH1 is required for the CAG repeat destabilizing effect of FAN1 loss. Thus, in HD, it is uncertain whether the RRM2B modifier effect on timing of onset may be due to a DNA instability mechanism. In contrast, the FAN1 modifier effects reveal that functional FAN1 acts to suppress somatic CAG repeat expansion, likely in genetic interaction with other DNA instability modifiers whose combined effects can hasten or delay onset and other CAG repeat length-driven phenotypes.


Assuntos
Proteínas de Ciclo Celular/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Enzimas Multifuncionais/genética , Proteína 1 Homóloga a MutL/genética , Ribonucleotídeo Redutases/genética , Idade de Início , Animais , Modelos Animais de Doenças , Genes Modificadores/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doença de Huntington/patologia , Camundongos , Camundongos Knockout , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética
18.
Am J Hum Genet ; 107(1): 96-110, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32589923

RESUMO

A recent genome-wide association study of Huntington disease (HD) implicated genes involved in DNA maintenance processes as modifiers of onset, including multiple genome-wide significant signals in a chr15 region containing the DNA repair gene Fanconi-Associated Nuclease 1 (FAN1). Here, we have carried out detailed genetic, molecular, and cellular investigation of the modifiers at this locus. We find that missense changes within or near the DNA-binding domain (p.Arg507His and p.Arg377Trp) reduce FAN1's DNA-binding activity and its capacity to rescue mitomycin C-induced cytotoxicity, accounting for two infrequent onset-hastening modifier signals. We also idenified a third onset-hastening modifier signal whose mechanism of action remains uncertain but does not involve an amino acid change in FAN1. We present additional evidence that a frequent onset-delaying modifier signal does not alter FAN1 coding sequence but is associated with increased FAN1 mRNA expression in the cerebral cortex. Consistent with these findings and other cellular overexpression and/or suppression studies, knockout of FAN1 increased CAG repeat expansion in HD-induced pluripotent stem cells. Together, these studies support the process of somatic CAG repeat expansion as a therapeutic target in HD, and they clearly indicate that multiple genetic variations act by different means through FAN1 to influence HD onset in a manner that is largely additive, except in the rare circumstance that two onset-hastening alleles are present. Thus, an individual's particular combination of FAN1 haplotypes may influence their suitability for HD clinical trials, particularly if the therapeutic agent aims to reduce CAG repeat instability.


Assuntos
Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Doença de Huntington/genética , Enzimas Multifuncionais/genética , Linhagem Celular , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Haplótipos/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
19.
Biol Psychiatry ; 87(9): 857-865, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32087949

RESUMO

BACKGROUND: Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene. It is diagnosed following a standardized examination of motor control and often presents with cognitive decline and psychiatric symptoms. Recent studies have detected genetic loci modifying the age at onset of motor symptoms in HD, but genetic factors influencing cognitive and psychiatric presentations are unknown. METHODS: We tested the hypothesis that psychiatric and cognitive symptoms in HD are influenced by the same common genetic variation as in the general population by 1) constructing polygenic risk scores from large genome-wide association studies of psychiatric and neurodegenerative disorders and of intelligence and 2) testing for correlation with the presence of psychiatric and cognitive symptoms in a large sample (n = 5160) of patients with HD. RESULTS: Polygenic risk score for major depression was associated specifically with increased risk of depression in HD, as was schizophrenia risk score with psychosis and irritability. Cognitive impairment and apathy were associated with reduced polygenic risk score for intelligence. CONCLUSIONS: Polygenic risk scores for psychiatric disorders, particularly depression and schizophrenia, are associated with increased risk of the corresponding psychiatric symptoms in HD, suggesting a common genetic liability. However, the genetic liability to cognitive impairment and apathy appears to be distinct from other psychiatric symptoms in HD. No associations were observed between HD symptoms and risk scores for other neurodegenerative disorders. These data provide a rationale for treatments effective in depression and schizophrenia to be used to treat depression and psychotic symptoms in HD.


Assuntos
Doença de Huntington , Transtornos Psicóticos , Cognição , Estudo de Associação Genômica Ampla , Humanos , Doença de Huntington/complicações , Doença de Huntington/genética , Transtornos Psicóticos/complicações , Transtornos Psicóticos/genética , Fatores de Risco
20.
J Hum Genet ; 64(10): 995-1004, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31296921

RESUMO

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in the first exon of the huntingtin gene (HTT). Since the entire course of the disease starts from this dominant gain-of-function mutation, lowering total or mutant huntingtin mRNA/protein has emerged as an appealing therapeutic strategy. We reasoned that endogenous mechanisms underlying HTT gene regulation may inform strategies to target the source of the disease. As part of our investigation to understand how the expression of HTT is controlled, we performed (1) complete sequencing analysis for mutant HTT 3'-UTR and (2) unbiased screening assays to identify naturally-occurring miRNAs that could lower the HTT mRNA levels. By sequencing HD families inheriting the major European mutant haplotype, we determined the full sequence of HTT 3'-UTRs of the most frequent mutant (i.e., hap.01) and normal (i.e., hap.08) haplotypes, revealing 5 sites with alternative alleles. In subsequent miRNA activity assays using the full-length hap.01 and hap.08 3'-UTR reporter vectors and follow-up validation experiments, hsa-miR-4324 and hsa-miR-4756-5p significantly reduced HTT 3'-UTR reporter activity and endogenous HTT protein levels. However, those miRNAs did not show strong haplotype-specific effects. Nevertheless, our data highlighting full sequences of HTT 3'-UTR haplotypes, effects of miRNAs on HTT levels, and potential interaction sites provide rationale and promising targets for total and mutant-specific HTT lowering intervention strategies using endogenous and artificial miRNAs, respectively.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Alelos , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Haplótipos , Humanos , Proteína Huntingtina/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...